关键字:
?

400热线:4000-8877-29
电  话:0755-89474066
传  真:0755-89474055
手  机:13143434911(欧生)
旺  旺:sztw2002
Skype :tuowei2002
E-mail:2355718786@qq.com
地址:深圳市宝安区福永镇凤凰一工业区兴业二路201号

您现在的位置:手板模型 > 资讯中心 > 手板常识 > 快速成型的特征和分类
快速成型的特征和分类
编辑:深圳手板模型   来源:未知   浏览次数:122   日期:2017-09-06 16:00
 快速成型手板
 
  快速成型特术具有以下几个重要特征:
 
  l )可以制造任意复杂的三维几何实体。由于采用离散/堆积成型的原理.它将一个十分复杂的三维制造过程简化为二维过程的叠加,可实现对任意复杂形状零件的加工。越是复杂的零件越能显示出 RP 技术的优越性此外, RP 技术特别适合于复杂型腔、复杂型面等传统方法难以制造甚至无法制造的零件。
 
  2 )快速性。通过对一个 CAD 模型的修改或重组就可获得一个新零件的设计和加工信息。从几个小时到几十个小时就可制造出零件,具有快速制造的突出特点。
 
  3 )高度柔性。无需任何专用夹具或工具即可完成复杂的制造过程,快速制造工模具、原型或零件
 
  4 )快速成型技术实现了机械工程学科多年来追求的两大先进目标.即材料的提取(气、液固相)过程与制造过程一体化和设计(CAD )与制造( CAM )一体化
 
  5 )与反求工程( Reverse Engineering)、CAD 技术、网络技术、虚拟现实等相结合,成为产品决速开发的有力工具。
 
  因此,快速成型技术在制造领域中起着越来越重要的作用,并将对制造业产生重要影响。
 
快速成型设备

 
  快速成型技术的分类:
 
  快速成型技术根据成型方法可分为两类:基于激光及其他光源的成型技术(Laser Technology),例如:光固化成型(SLA )、分层实体制造(LOM)、选域激光粉末烧结(SLS)、形状沉积成型(SDM)等;基于喷射的成型技术(Jetting Technoloy),例如:熔融沉积成型(FDM)、三维印刷( 3DP )、多相喷射沉积( MJD )。下面对其中比较成熟的工艺作简单的先容。
 
  1、SLA(Stereolithogrphy Apparatus)工艺 SLA 工艺也称光造型或立体光刻,由Charles Hul 于 1984 年获美国专利。 1988 年美国 3D System企业推出商品化样机SLA-I,这是世界上一台快速成型机。SLA 各型成型机机占据着 RP 设备市场的较大份额。
 
  SLA 技术是基于液态光敏树脂的光聚合原理工作的。这种液态材料在一定波长和强度的紫外光照射下能迅速发生光聚合反应,分子量急剧增大,材料也就从液态转变成固态。
 
  SLA工作原理:液槽中盛满液态光固化树脂激光束在偏转镜作用下,能在液态表而上扫描,扫描的轨迹及光线的有无均由计算机控制,光点打到的地方,液体就固化。成型开始时,工作平台在液面下一个确定的深度.聚焦后的光斑在液面上按计算机的指令逐点扫描,即逐点固化。当一层扫描完成后.未被照射的地方仍是液态树脂。然后升降台带动平台下降一层高度,已成型的层面上又布满一层树脂,刮板将粘度较大的树脂液面刮平,然后再进行下一层的扫描,新周化的一层牢周地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。
 
  SLA 方法是目前快速成型技术领域中研究得多的方法.也是技术上成熟的方法。 SLA 工艺成型的零件精度较高,加工精度一般可达到 0.1 mm ,原材料利用率近 100 %。但这种方法也有白身的局限性,比如需要支撑、树脂收缩导致精度下降、光固化树脂有一定的毒性等。
 
  2、LOM(Laminated Object Manufacturing,LOM)工艺LOM工艺称叠层实体制造或分层实体制造,由美国Helisys企业的Michael Feygin于 1986 年研制成功。LOM工艺采用薄片材料,如纸、塑料薄膜等。片材表面事先涂覆上一层热熔胶。加工时,热压辊热压片材,使之与下面已成型的工件粘接。用CO2激光器在刚粘接的新层上切割出零件截面轮廓和工件外框,并在截面轮廓与外框之间多余的区域内切割出上下对齐的网格。激光切割完成后,工作台带动已成型的工件下降,与带状片材分离。供料机构转动收料轴和供料轴,带动料带移动,使新层移到加工区域。工作合上升到加工平面,热压辊热压,工件的层数增加一层,高度增加一个料厚。再在新层上切割截面轮廓。如此反复直至零件的所有截面粘接、切割完。去除切碎的多余部分,得到分层制造的实体零件。
 
  LOM 工艺只需在片材上切割出零件截面的轮廓,而不用扫描整个截面。因此成型厚壁零件的速度较快,易于制造大型零件。工艺过程中不存在材料相变,因此不易引起翘曲变形。工件外框与截面轮廓之间的多余材料在加工中起到了支撑作用,所以 LOM 工艺无需加支撑。缺点是材料浪费严重,表面质量差。
 
  3、SLS(Selective Laser Sintering)工艺   SLS工艺称为选域激光烧结,由美国德克萨斯大学奥斯汀分校的C.R.Dechard于 1989 年研制成功。 SLS工艺是利用粉末状材料成型的。将材料粉末铺洒在已成型零件的上表面,并刮平,用高强度的CO2激光器在刚铺的新层上扫描出零件截面,材料粉末在高强度的激光照射下被烧结在一起,得到零件的截面,并与下面已成型的部分连接。当一层截面烧结完后,铺上新的一层材料粉末,有选择地烧结下层截面。
 
  烧结完成后去掉多余的粉末,再进行打磨、烘干等处理得到零件。
 
  SLS工艺的特点是材料适应面广,不仅能制造塑料零件,还能制造陶瓷、蜡等材料的零件,特别是可以制造金属零件。这使SLS工艺颇具吸引力。SLS工艺无需加支撑,因为没有烧结的粉末起到了支撑的作用。
 
  4、3DP (Three Dimension Printing)工艺三维印刷工艺是美国麻省理工学院E-manual Sachs等人研制的。已被美国的Soligen企业以DSPC(Direct Shell Production Casting)名义商品化,用以制造铸造用的陶瓷壳体和型芯。
 
  3DP 工艺与SLS工艺类似,采用粉末材料成型,如陶瓷粉末、金属粉末。所不同的是材料粉末不是通过烧结连结起来的,而是通过喷头用粘结剂(如硅胶)将零件的截面“印刷”在材料粉来上面。
 
  用粘结剂粘接的零件强度较低,还须后处理。先烧掉粘结剂,然后在高温下渗人金属,使零件致密化,提高强度。
 
  5 . FDM (Fused Depostion Modeling)工艺     熔融沉积制造( FDM )工艺由美国学者Scott Crump于 1988 年研制成功。 FDM 的材料一般是热塑性材料,如蜡、 ABS 、尼龙等。以丝状供料。材料在喷头内被加热熔化。喷头沿零件截面轮廓和填充轨迹运动,同时将熔化的材料挤出,材料迅速凝固,并与周围的材料凝结

0

?
XML 地图 | Sitemap 地图